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OBJECTIVES
Learn a dictionary of statistically independent
features from a signal using sparse coding [1]
in order to automatically characterize physical
phenomena, including emerging faults.

• Probabilistic feature learning
• Data-driven approach, few assumptions
• Vibration and acoustic emission signals
• Detection of new and abnormal features

METHODS
The signal, x(t), is modeled as a linear super-
position of noise and features with compact
support

x(t) = ε(t) +
∑
i

aiφm(i)(t− τi). (1)

The functions φm(t) ∈ Φ are morphological
features called atoms. The weights, ai, and
temporal offsets, τi, of atoms are calculated
with matching pursuit [2].
The dictionary of atoms, Φ, is random at start
and is learned by maximization of the expecta-
tion of the log data probability

Φ = arg maxΦ〈log [p(x | Φ)]〉. (2)

Equation (2) is solved with gradient ascent us-
ing a prior that promotes sparse coding and
statistical independence of atoms [3, 4]

∆φm
η

=
∂ log [p(x | Φ)]

∂φm
=

1

σ2
ε

∑
i

ai(x− x̂)τi .

(3)
The factors (x−x̂)τi are residuals after matches
with atoms φm(i) of amplitudes ai at offsets
τi. A learning rate parameter, η � 1, is in-
troduced in the gradient ascent so that atoms
converge. The number of atoms in the dictio-
nary is set at start.

INTRODUCTION
Condition monitoring of machine elements
is used to detect faults and reduce machine
downtime. Early detection and characteriza-
tion of abnormal operational conditions and
emerging faults is an important and challeng-
ing problem. We study the use of feature-
learning methods for automatic structuring
and characterization of condition-monitoring
signals from individual industrial machines.
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Figure 1: Basic blind-source separation problem.

Learning of features in an artificially con-
structed signal, which is a superposition of:

• Continuous sine function
• Morlet wavelets at random offsets
• Impulse functions, with exponential rise

and decay, at random offsets
• Noise at 10 dB SNR

The two columns in the figure shows the true
features of the signal and the learned atoms.
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Figure 2: Event representation of ball-bearing vi-
bration data using a dictionary of 16 learned atoms.

The signal (dashed line) is decomposed
in events (triangles) representing activated
atoms, which are substracted from the origi-
nal signal resulting in a residual (solid line).
The learned dictionary contains impulse-like
atoms because of a defect in the bearing. On
average 150 samples are represented by about
21 events at 10 dB SNR, i.e., the code is sparse.
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Figure 3: Histogram of event rates for each of the
sixteen atoms in the learned dictionary.

Analysis of event rates is sufficient to distin-
guish normal bearings from faulty bearings,
indicating that the learned features are related
to different physical conditions.

• Faulty bearings are divided in three cat-
egories depending on the location of the
faults (ball, inner race or outer race)
• The type of defect is characterized by

the channel event rates, even thought the
rpm, load and size of faults are varying
• Atoms learned from normal bearings

have low center frequencies.
• Atoms learned from faulty bearings have

higher center frequencies.

CONCLUSION
Sparse coding with dictionary learning is an
interesting probabilistic method for feature
extraction in condition monitoring applica-
tions. We find that the learned dictionary is
useful in a basic classification task involving
bearings with different faults. In addition, it
is possible to reach about one order of magni-
tude reduction in data rate with little loss of
useful information. A prototype implementa-
tion is presented in [5, 6, 7], including a discus-
sion of a high-speed online processing system
based on an FPGA.
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FUTURE WORK
• Further development of the feature

learning method and analysis of more
realistic failure modes

• Processing of resulting events (pattern
recognition) and waveforms (hybrid
model?)

• Develop test-rig for acoustic emission
experiments

• Further development of the FPGA pro-
totype implementation [5, 6, 7]
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